Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Med (N Y) ; 3(7): 468-480.e5, 2022 07 08.
Article in English | MEDLINE | ID: covidwho-1851770

ABSTRACT

BACKGROUND: Much remains unknown regarding the response of the immune system to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccination. METHODS: We employed circulating cell-free DNA (cfDNA) to assess the turnover of specific immune cell types following administration of the Pfizer/BioNTech vaccine. FINDINGS: The levels of B cell cfDNA after the primary dose correlated with development of neutralizing antibodies and memory B cells after the booster, revealing a link between early B cell turnover-potentially reflecting affinity maturation-and later development of effective humoral response. We also observed co-elevation of B cell, T cell, and monocyte cfDNA after the booster, underscoring the involvement of innate immune cell turnover in the development of humoral and cellular adaptive immunity. Actual cell counts remained largely stable following vaccination, other than a previously demonstrated temporary reduction in neutrophil and lymphocyte counts. CONCLUSIONS: Immune cfDNA dynamics reveal the crucial role of the primary SARS-CoV-2 vaccine in shaping responses of the immune system following the booster vaccine. FUNDING: This work was supported by a generous gift from Shlomo Kramer. Supported by grants from Human Islet Research Network (HIRN UC4DK116274 and UC4DK104216 to R.S. and Y.D.), Ernest and Bonnie Beutler Research Program of Excellence in Genomic Medicine, The Alex U Soyka Pancreatic Cancer Fund, The Israel Science Foundation, the Waldholtz/Pakula family, the Robert M. and Marilyn Sternberg Family Charitable Foundation, the Helmsley Charitable Trust, Grail, and the DON Foundation (to Y.D.). Y.D. holds the Walter and Greta Stiel Chair and Research Grant in Heart Studies. I.F.-F. received a fellowship from the Glassman Hebrew University Diabetes Center.


Subject(s)
BNT162 Vaccine , COVID-19 , Cell-Free Nucleic Acids , SARS-CoV-2 , Adult , Aged , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/genetics , Antibodies, Viral/immunology , BNT162 Vaccine/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , Cell-Free Nucleic Acids/genetics , Cell-Free Nucleic Acids/immunology , Female , Humans , Immunization, Secondary , Male , Memory B Cells/immunology , Memory B Cells/metabolism , Middle Aged , SARS-CoV-2/immunology , Young Adult
2.
Sci Transl Med ; 13(618): eabj2266, 2021 Nov 03.
Article in English | MEDLINE | ID: covidwho-1443348

ABSTRACT

Most severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnostic tests have relied on RNA extraction followed by reverse transcription quantitative polymerase chain reaction (RT-qPCR) assays. Whereas automation improved logistics and different pooling strategies increased testing capacity, highly multiplexed next-generation sequencing (NGS) diagnostics remain a largely untapped resource. NGS tests have the potential to markedly increase throughput while providing crucial SARS-CoV-2 variant information. Current NGS-based detection and genotyping assays for SARS-CoV-2 are costly, mostly due to parallel sample processing through multiple steps. Here, we have established ApharSeq, in which samples are barcoded in the lysis buffer and pooled before reverse transcription. We validated this assay by applying ApharSeq to more than 500 clinical samples from the Clinical Virology Laboratory at Hadassah hospital in a robotic workflow. The assay was linear across five orders of magnitude, and the limit of detection was Ct 33 (~1000 copies/ml, 95% sensitivity) with >99.5% specificity. ApharSeq provided targeted high-confidence genotype information due to unique molecular identifiers incorporated into this method. Because of early pooling, we were able to estimate a 10- to 100-fold reduction in labor, automated liquid handling, and reagent requirements in high-throughput settings compared to current testing methods. The protocol can be tailored to assay other host or pathogen RNA targets simultaneously. These results suggest that ApharSeq can be a promising tool for current and future mass diagnostic challenges.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Nucleic Acid Testing , COVID-19 Testing , Humans , Specimen Handling
SELECTION OF CITATIONS
SEARCH DETAIL